Developing Statistical Teaching
 Material through Statistical Literacy

AOYAMA, Kazuhiro Mathematical Education Course Aichi University of Education

Outline

- Aims of Statistics Education
- Through PISA problems as a clue
- Revised Japanese Curriculum Related to Statistics
- Hierarchy of Statistical Literacy
- As a guideline to develop teaching materials
- Some examples of Statistical tasks
- Lesson example of Statistics from Japan

PISA Problems (3)-2
Manufinturw of alam yytems uret the ame data to profuce the following gaph

Nime ficom

Il aw dit the des Ingess marme up with the staph and why?
The poliec were not ton happy with the graph from the aldem whtemp
manufactureis beause the police want to show how successful cime fighting has been
 resently.」

Content strands in primary school

Course of Study 2008

Y1(4)	0	\bigcirc	0	\bigcirc
Y2(5)	\bigcirc	0	0	0
Y3(5)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Y4(5)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Y5(5)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Y6(5)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

*Note: Average hours per a week for Math.

Content strands in higher secondary school grade10(16years old): Math I is compulsory subject

 per a week(A period is 50 minutes) per a week(A period is 50 minutes) \({ }^{11}\)
 Course of Study 2000

- Equation and inequality
- Quadratic Function
- Figure and measurement
- Analysis of data

Course of Study 2009

- Number and expression
- Figure and measurement
- Quadratic Function

Contents of Statistics on National Curriculum in JAPAN primary(Y1-Y6) and lower secondary(Y7-Y9) school			
Contents Curriculum revised year	1989	1999	2008
Representation using picture and chart			Y1
Simple table and graph	Y2	Y3	Y2
Bar graph	Y3	Y3	Y3
Line graph	Y4	Y4	Y4
Pi graph	Y5	Y5	Y5
Column graph	Y5	Y5	Y5
Average	Y5 (Average of measurement)	Y6	Y6
Frequency table	Y6		Y6
Possible outcome	Y6	Y8	Y6
Frequency table, Histogram	Y8		Y7
Mean, Median, Mode	Y8(Mean only)		Y7
Range	Y8		Y7
Relative frequency	Y8		Y7
Approximation	Y8		Y7
Probability	Y9	Y8	Y8
Sampling and population	Y9		Y9

Aim of each grade's
"Using and Applying of Data"
Y7 Along with the purpose, collect data, organize data by using ICT and interpret those

Y8 Through the investigation of uncertain events, understand probability itself and how to use probability
Y9 \quad Foster the ability to read the tendency of population from sample

Hierarchy of Statistical Literacy

- Level 1: Idiosyncratic

Students at this level cannot read values or trends in graphs. They fail to connect some features extracted from graphs with context.

- Level 2: Basic Graph Reading

Students at this level can read values and trends in graphs. But they cannot explain contextual meanings of trends or features, which they could see, and can't contextualize events presented

- Level 3: Rational/Literal

Students at this level can read values and trends. They explain contextual meanings literally in terms of features shown in a graph. They cannot

- Level 4: Critical
- Students at this level can read graphs and understand presented contextual Students at this lever can read graphs and understand presented cont
meanings. Still more, they can evaluate the reliability of presented meanings. Still more, they can evaluate the reliability of presen
contextual meaning. They can question information presented.
- Level 5: Hypothesizing and Modelling

Students at this level can read graphs, and accept and evaluate some presented information. They can form their own explanatory hypotheses or models. Aoyama K. (2007). Investigating a hierarchy of students' interpretations of graphs,
International Electronic Journal of Mathematics Education, vol. 2, No. 3, pp.298-318

Apply the Hierarchy as a Guideline

Level 1: Idiosyncratic

Level 2: Basic Graph Reading
Level 3: Rational/Literal
\Rightarrow Implication Task
Level 4: CriticalCritical Task
Level 5: Hypothesizing and Modelling
Creative Task

From different perspective
\Rightarrow
Description Task

Example of Task① Global Data in 2008

Country	Amoumt of CO2 emission (million ton)	Population (million)	GDP (billion USS
Japan	$\mathbf{1 , 1 5 1 . 1}$	127.8	$4,879.84$
Korea	501.3	231.6	931.41
China	$6,508.2$	$1,328.6$	$4,519.95$
United States	$5,595.9$	305.8	$14,291.55$
Canada	550.9	32.9	$1,502.68$
UK	510.6	60.8	$2,182.43$
Italia	430.1	58.9	$2,307.30$
Netherland	177.9	16.4	875.27
Spain	317.6	44.3	$1,601.41$
German	803.9	82.6	$3,640.73$
France	368.2	61.6	$2,842.52$
Australia	397.5	20.7	$1,061.04$

- Is Japan "a bad country for environment", because the amount of CO2 emission of Japan is ranked third?

- Can you conclude "Spending more time playing TV game make children more violent"?

Aoyama K. (2007). Investigating a hierarchy of students' interpretations of graphs,
International Electronic Journal of Mathematics Education, vol. 2, No. 3, pp.298-318.

Lesson Example from Japan related to "Description Task"

- The table right shows running time (in hours) of batteries from two companies.
- The table below shows summary statistics of those
- Can you choose which company's battery is better to use.

	A company	B company
Number	100	100
Average	448.1	447.9
Median	448	447
Mode	445	445
Min	423	391
Max	472	501
Range	49	110

Lesson Example from Japan related to "Description Task"

