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Mathematics textbooks play different roles in different countries. In some countries 
they are essential to the quality of instruction and in others they are viewed as not 
being necessary for experienced teachers. Moreover, the media used to create 
mathematical texts has advanced from clay tablets to digital ink but this change in 
the way texts are packaged is not always paralleled in the content of the text. What 
are some of the educational design features that could help to align the medium of 
presentation with the content of electronic mathematics textbooks?  
When it comes to the current generation of digital mathematics textbooks it is true as 
Shakespeare noted: “All that glisters is not gold”. Many digital mathematics 
textbooks are simple adaptations of paper texts with the quality of the digital text 
dependent upon the printed text. Yet digital texts can provide different affordances 
and constraints to learning mathematics.  

WHAT IS THE INTENDED USE OF MATHEMATICS TEXTBOOKS? 
In a recent newspaper article (Fiji Sun, January 22, 2011) teachers were asked to “be 
innovative in their work and not to rely a lot on textbooks”. Had this statement from 
the Minister of Education been made in a different country, say Korea, it would have 
been met with total disbelief. For many countries, the mathematics textbook is 
considered to be the most important teaching material (Bae, Sihn, Park, & Park, 
2008). In Japan, centrally approved mathematics textbooks are an integral part of the 
implemented curriculum. Indeed, the School Education Law in Japan states that the 
use of textbooks is compulsory (MEXT, 2010). Clearly, the use of mathematics 
textbooks, particularly in primary schools, is looked at differently in different 
countries. In Australia, the view of progressive elementary mathematics educators is 
that it is desirable to ween teachers off a dependence on textbooks.  This appears to 
be due, at least in part, to an over-reliance on mathematics textbooks for content 
knowledge by less confident teachers (Stipek, Givven, Salmon, & MacGyvers, 2001). 
Where a free market approach is used with the development of mathematics 
textbooks, that is, let the buyer beware, allowing a textbook to become the de facto 
curriculum is at best a gamble. 
Throughout history, mathematics textbooks have been synonymous with mathematics 
education (Gray, 1990; Love & Pimm, 1996). However, mathematics textbooks in 
Japan and Australia appear to serve different functions. Many commonly used 
textbooks in Australia are focused on skill acquisition through a heavy emphasis on 
procedural practice. This emphasis means that mathematics textbooks are typically 
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voluminous as they contain exercises designed to provide many opportunities for 
practice, and presumably to allow the teacher to differentiate instruction by allocating 
different exercises to different students. Rather than having many questions of the 
same type, Japanese textbooks appear to strive to have fewer questions and focused 
more on concept development. In exploring differences in mathematics texts it is 
important to recognise that the cultural practices surrounding the pedagogical use of 
textbooks shape their content. The exercises used in training scribes in ancient times 
may not achieve today’s goals of educating the total population of countries.  

FROM STATIC TEXT TO DYNAMIC TEXT 
There is an old parable that states that no one pours new wine into old wineskins. For 
if he does, the new wine will burst the skins, the wine will run out and the wineskins 
will be ruined.  Traditionally, old wineskins lost their elasticity as they expanded 
during the fermentation of the new wine. The wineskin was an early device for 
holding wine, as was the amphora. These containers were in time superseded by the 
glass bottle. That is, the media used to hold wine has developed over time as have the 
methods used to control fermentation. 
In a similar way, mathematics education has a long history of using different media 
to communicate ideas. The media used to present mathematics can be thought of as 
types of screens. Initially these screens have been passive: lines drawn in the dust, 
text on paper, or images projected on physical screens. Almost 4000 years ago the 
Babylonians used clay tablets to act as screens in recording their mathematics texts 
(Figure 1).  

 

Figure 1. Yale Babylonian Collection YBC 7289 
Yet irrespective of the form of the passive screen, texts do not speak for themselves. 
For example, the tablet from the Yale Babylonian collection in Figure 1 has been 
described as “illustrating Pythagoras’ Theorem and the square root of 2”. However, 
this is clearly only an interpretation of what the author intended to record. YBC 7289 
appears to show a square with the diagonals marked and cuneiform base 60 numerals. 
To give meaning to the markings on a clay tablet we activate ‘mental screens’ 
(Mason, 1992). That is, the images evoked by the markings on the clay tablet can 
energise our mental screens as we seek to interpret, and sometimes elaborate, a static 
screen. This process begins by assigning meaning to symbols. 
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Figure 2. Bill Castleman’s annotations to YBC 7289 
(http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html) 

The cuneiform figures representing 

! 

1+
24

60
+
51

60
2

+
10

60
3
 (Figure 2) are taken as an 

approximation of root 2 (an interpretation triggered by the diagonals of a square) with 
the remaining figures showing what we take to be the calculated diagonal length of a 
square with side length 30 units. This is quite a lot of meaning that we give to a small 
number of clay markings. If traditional printed text is open in permitting students to 
construe what they see in a variety of ways, mathematical images are even more open 
to ambiguity and to alternative stressing and ignoring. For example in Figure 3, some 
students interpret only a square in an upright position as an example of a square 
(Hershkowitz, 1990). 

 
Figure 3. Only one image perceived as a square 

Consequently, even the way the tablet is oriented will influence how students 
interpret what they see. In digital texts as in historical mathematics texts, what we 
read into a text is always a function of our current knowledge and ways of thinking. 
The tablet YBC 7289 does not, in my opinion, demonstrate Pythagoras’ Theorem in 
any general sense. It is an example that appears to draw on a good approximation to 
the length of the hypotenuse of a right isosceles triangle.  
The tablet YBC 7289 may also be considered to be an icon1 in two different ways, 
which can be described as surface and deep observations. Thus, a surface observation 
of this icon can lead us to think that it may be a representation of a mathematical 
object. However, in order to move from this idea to seeing it as a figure, as referring 
directly to the mathematical object itself, requires interpretation. 

                                                
 
1 The term icon is used here in the sense of Peirce’s semiotic, i.e. as having qualities that resemble 
those of the object it represents. 
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Understanding how we use text and images to learn and think about mathematics is 
necessary in appreciating how electronic mathematics texts can aid student learning. 
Moreover, the distinction between students engaging in mathematical activity or 
“doing” and students learning from activity, which Mason calls “construing” (1992, 
p. 2) provides a way of seeing the development of mathematics texts as a progression 
from activities for scribes, to tool-augmented opportunities for learning from activity.  
From clay to paper 
Moving from clay to paper we have an example of a different text that appears to 
represent a proof of a specific case of the Gougu (the hook and the leg) Theorem of 
China, also construed by some as Pythagoras’ theorem.  

 

Figure 4. Diagram added to the Zhou Bi (周髀) by the 3rd Century commentator Zhao Shuang 
Here the image (Figure 4) might be used to give a graphical dissection proof of the 
gougu relation, although this does not appear to have been the author’s intent (Cullen, 
2002). Interpreting mathematical traditions can be subject to a form of historical 
cultural imperialism. Ancient China developed its own mathematical culture based on 
a radically different approach to the Euclidean structuring of mathematical thought. 
Indeed, ancient Chinese mathematicians did not talk about right-angled triangles, 
because they did not talk about triangles in any general sense. Rather than a 
Euclidean axiomatic approach to mathematics, ancient Chinese mathematicians 
sought to distinguish categories of problems in order to unite categories. 
Figure 4 brings to mind the method of ‘piling up of squares’ or dissection and 
rearrangement. In turn, the method of dissection and rearrangement suggests 
movement and may be better supported by dynamic rather than static mathematics 
texts. This prompts the question: Is animation an important feature of the new digital 
mathematics texts? 
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Watching or doing? 
Watch the following animation. 
 
 
 
 
 
 
 

 

Figure 5. A featured animation on Wikimedia Commons, considered one of its finest images 
(http://commons.wikimedia.org/wiki/File:Pythagoras-2a.gif) 

By watching this animation do you come to understand how to prove Pythagoras’ 
theorem? If not, what else might you need to do? The flow of an animation is often 
too fast to allow you to ask and answer questions about the mathematics. This brings 
me to my first design challenge for electronic mathematics textbooks. 

DESIGN CHALLENGE 1.  
Animation is not a substitute for interaction. 

 
Objects that can be manipulated directly are usually easier to understand and help 
you to get a feel for the mathematics. If animation is used in a mathematics digital 
text, it is best to place the controls of the animation in the hands of the user. Many 
internet websites make use of animations to demonstrate dissection and 
rearrangement proofs of Pythagoras’ Theorem (e.g. 
http://sunsite.ubc.ca/DigitalMathArchive/Euclid/java/html/pythagorasdissection.html). While 
these use the power of digital technology to portray dynamic imagery they also bring 
to the fore the challenge of distinguishing between students engaging in 
mathematical activity or “doing” and learning from activity. It is quite easy to play 
these animations repeatedly without learning from the activity.  
Writing mathematics 
The technology of printing allowed ideas to be shared and made available to the 
general population. However, the physical limitations of printing impacted on the 
adoption of ways of symbolising mathematics and the creation of mathematics texts. 
For example, in 1659 the Swiss, Johann Heinrich Rahn, published an algebra in 
which he introduced ÷ as a sign of division. Many writers before him had used ÷ as a 
minus sign. English translations of Rahn’s work led to the eventual popularisation of 
÷ for division but this was not a simple process. For some time, both ÷ and : were 
used as symbols for division. The former predominantly belonged to Great Britain 
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and the United States. The latter belonged to continental Europe and the Latin-
American countries. 
Leibniz introduced, and to some extent popularised, the colon as the symbol for 
division in Europe and frequently used a colon when writing fractions, leading to 
rendering 1:3 = 

! 

1

3
. Symbolising as a form of representation influences our 

appreciation of mathematics and our capacity to do mathematics. We rely on the 
symbol system to carry some of the cognitive load associated with thinking through 
problems. Yet typesetting input systems restrict the flexibility of the symbol system 
used with mathematics. Mathematicians writing papers or creating formal 
presentations in current times often rely on special typesetting languages, such as 
LaTex, to write even simple fractions:  {$${\frac {1}{3}}$$}. One of my 
mathematics teachers used to frequently remind me that you always read 
mathematics with a pencil in your hand. This becomes rather difficult if we change 
totally from a paper-based medium to a digital medium. However, as we do not 
currently write in mathematics textbooks this should not be an insurmountable 
obstacle.  

DESIGN CHALLENGE 2.  
Recording mathematics should be as natural as possible but 
need not be a requirement of a mathematics e-text. 

 
Using mathematical storyboards 
In teaching mathematics we often seek to establish a general result using a form of 
inductive reasoning to move from specific cases to a general rule. If we choose our 
examples carefully we can also build the foundation for deductive reasoning.  

 
Figure 6. An image showing 52 as the sum of the first 5 odd integers 

One image, as in Figure 6, or even a series of images doesn’t prove a general result to 
our present expectations of proof2. However, this diagram can help us to see that to 
get from 42 to 52 we add on (2 x 5 – 1). That is, 1 + 3 + 5 + … + (2n – 1) = n2. This 
result is often one of the first examples used to teach proof by mathematical 
induction. The value of the arrangement of the specific cases in this example assists 
                                                
 
2 Before the development of symbolic algebra, geometric demonstrations were considered valid 
modes of proof (see Proofs Without Words by R. B. Nelson, MAA, 1993). 
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us to see how to create the general term. Further, the diagrammatic method can be 
used to help students arrive at mathematical concepts independently with a sense of 
why the result must be true. The diagrammatic method can also provide clues to steps 
in a deductive proof. One of my hopes is that digital mathematics textbooks will 
provide a vehicle for the evolution of an interactive diagrammatic method.  
When we create an animation it is common practice to develop a summary of the 
action as a storyboard of the key frames. The key frames capture significant 
developments in the story. Consider the following as frames in a simple storyboard 
dealing with a specific example of the Pythagorean relationship (Figure 7). 

 

Figure 7. A storyboard to find the length of the bowstring (hypotenuse) 

Digital textbooks can provide simple interactivity to enable students to rearrange the 
geometric shapes in Figure 7. Providing space to record reasoning and calculations 
below each frame can provide a structure that could support the use of the 
diagrammatic method. Students can discern the relationships contributing to the 
desired generalisation (see Figure 8).  

 

Figure 8. Generalising the values in the storyboard 

Storyboards can be used to link written argument with the diagrams. Alternatively 
blank frames may be used to create opportunities to add in missing steps in the story. 
The best way to use the diagrammatic method with digital mathematics textbooks is a 
question that can ultimately be answered empirically. However, the potential of 
interactive diagrams is important in the design of digital textbooks. 
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DESIGN CHALLENGE 3. 
The interactivity and experimentation possible with computers should enable 
digital mathematics textbooks to make effective use of the diagrammatic method. 

A DIGITAL TEXTBOOK PROGRAM 
“All that glisters is not gold.” 

The Merchant of Venice (II, vii) 

Although the limitations of traditional paper textbooks are well known in terms of 
their expense, weight and rigidity of format, the strengths and limitations of using 
electronic textbooks for mathematics content need to be articulated. Several 
educational jurisdictions have announced a commitment to digital textbooks. For 
example, the Education Ministry of South Korea announced the Digital Textbook 
program on March 8, 2007. The digital textbook is currently being tested in several 
primary schools in Korea with the intention of distributing it free to every school 
nation-wide by 2013.  
On a different scale, California announced a Free Digital Textbook Initiative in 2009 
with a focus on high school textbooks. One source of free digital mathematics 
textbooks is the CK-12 Foundation, a non-profit organisation attempting to reduce 
the cost of textbook materials. CK-12 Foundation uses an open-content, web-based 
model they call the FlexBook. FlexBooks are intended to conform to national and 
state textbook standards. However, if we look at how Pythagoras’ theorem is 
addressed in FlexBooks, we see that it is very much ‘old wine in new skins’ (Figure 
9). 

 

Figure 9. Traditional resources described in a FlexBook 
http://www.ck12.org/flexbook/chapter/8938 

The FlexBook approach to the ‘proof’ of Pythagoras’ Theorem ignores the digital 
medium and describes the ‘Tools Needed’ as traditional pencil, paper and scissors. 
The question of what tools are needed with a digital mathematics textbook is 
important in the development of digital resources.  
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The Mathematics Digital Textbooks used in the South Korean program also copy the 
content of printed textbooks. The Digital Textbooks are used on a tablet PC with 
input from a stylus and the keyboard. In a report on the problems of learning with the 
Mathematics Digital Textbook for Grade 6 (Choi, J-I, Yum, M., & Lee, Y-T, 2010) 
one of the challenges identified was representing the mathematics in both the original 
printed textbook and the digital textbook. For example, when dealing with division of 
fractions (

! 

5

6
÷
2

6
) the majority of the students in the study obtained an incorrect answer 

(commonly, 3) using the representation provided in the textbook (Figure 10). 

 

 Figure 10. Dividing 5-sixths by 2-sixths using the Korean DigitalBook 

When subdividing 

! 

5

6
m to determine how many times 

! 

2

6
m would divide into it, many 

students appeared to focus on the number of pieces formed. The introductory 
animation showing students how to cut a ribbon also divided the ribbon into three 
pieces, where the size of each piece was not the same. 
Another problem identified with the Digital Textbook was the sequencing of content. 
Examples that drew upon dividing one integer by another frequently elicited decimal 
responses rather than answers in common fractions, as this was the topic learnt prior 
to the unit on division of fractions. Also, on some activities it was not obvious how to 
use the mouse to achieve the task goal. That is, the interactive tool kit did not have a 
natural interface or visible affordance. The term affordance was used initially by the 
perceptual psychologist J. J. Gibson (1977) to refer to the actionable properties 
between the world and an actor. Put more simply, a perceived affordance typically 
describes whether the user perceives that some action is possible. This was one of the 
problems identified with the task in Figure 11 (Choi, J-I, Yum, M., & Lee, Y-T, 
2010). 

 
Figure 11. Students had to double-click to drag two pieces (sixths) at the same time 
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Information from the evaluation of the Korean Digital Textbook program identifies 
the need for sound content sequencing as it relates to the development of 
representational tools. It also prompts pedagogical questions about the use of 
representations. 

DESIGN CHALLENGE 4. 
Students should always attempt a new type of mathematics problem with a 
familiar representational tool.  

As learners come to use particular representations in learning activities, the 
representations help guide the learning process. How representational tools are 
introduced and how connections are made between the uses of particular tools are 
important considerations in the development of digital textbooks. Tool use influences 
the nature of external behaviour and also the mental functioning of individuals 
(Vygotski, 1978). 

USING TOOLS WITH DIGITAL MATHEMATICS TEXTBOOKS 
Identifying the types of tools used to support mathematics learning is important in the 
design of effective digital mathematics texts. If the question of which representational 
tools need to be developed in a mathematics curriculum has been addressed in the 
existing mathematics textbooks, the development of a digital textbook is 
predominantly a technical challenge. Software such as dbook (CRICED, 2008) can 
help in addressing the technical challenge. However, dbook starts from the premise 
that the digital text is based on a high quality paper-based textbook. This means that 
decisions related to appropriate representational tools have often been made before 
the digital text is created. In many countries, these decisions on developing 
appropriate representational tools and how they might be portrayed in texts are yet to 
be made. Even the awareness that this is an important question in curriculum design 
and delivery may not be evident. 
For example, the tape diagram is an important representational tool used in Japanese 
mathematics textbooks as well as in those in Singapore (Beckman, 2004; Murata, 
2008). Tape diagrams are used for multiple mathematics topics and are developed 
across several grade levels. Drawings of linear arrangements of objects are used as 
precursors to the introduction of single tape diagrams to represent addition and 
subtraction problems. This in turn is followed by “two tape” diagrams and pairing a 
tape diagram with a number line. One would expect that he tape diagram or bar 
model, as specific examples of the diagrammatic approach, should be evident in 
digital mathematics textbooks developed in those countries. 
Digital mathematics textbooks clearly create opportunities to harness the interactivity 
possible with computers to support student learning. Publishing formats such as 
EPUB, which supports reflowing text, or PDF, which maintains the page format, 
coupled with the needs of e-readers, can support or limit the interactivity needed in 
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digital mathematics texts. To reach their potential, digital mathematics textbooks 
need to address the challenge of supporting the representational tools that students 
use to give meaning to mathematics.  
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